Heteronuclear Cluster Systems. Part 12.† Synthesis of µ-Phenylphosphinediyl-bis(tetracarbonylcobalt) and 1,1,1,2,2,2,3,3,3-Nonacarbonyl- μ_{a} -phenylphosphinediyl-*triangulo*-dicobaltiron

By Jennifer C. Burt and Günter Schmid,* Fachbereich Chemie, The University, Lahnberge, 3550 Marburg, West Germany

The reaction of Na[Co(CO)₄] with PPhCl₂ at -78 °C gives [{Co(CO)₄}₂PPh] (1) in good yield. A solution of (1) evolves CO gas at 60 °C giving [Co₂(CO)₇(PPh)]. Complex (1) reacts with [Fe₂(CO)₉] to form a new mixedmetal cluster complex [Co₂Fe(CO)₉(PPh)].

THE formation of cobalt carbonyl clusters of general formula $[Co_3(CO)_{\mathbf{q}}E]$ (E = a main-group or transition element plus ligands to satisfy its electronic requirements) from $Na[Co(CO)]_4$ or $[Co_2(CO)_8]$ and various trihalide compounds, e.g. PX₃S,¹ PX₃,¹ or AlCl₃,² has been reported. Also, the possibility of building the cluster from dihalide reagents such as PRCl₂ to give [Co₃(CO)₉(PR)] (R = Ph, Bu^t, or NEt₂) has been described.³ No mechanism of formation of these latter complexes has been suggested although it seems feasible that an intermediate species $[{Co(CO)_4}_2PR]$ is involved. We now report an investigation of the reaction of Na[Co(CO)₄] and PPhCl, and the isolation of a new type of phosphine complex.

RESULTS AND DISCUSSION

In recent years the group PPh⁴ has been shown to be capable of several different modes of co-ordination to transition metals, due to variations in the use of its four available electrons; Huttner et al.5,6 have been concerned with preparing phosphinediyl complexes. An X-ray crystal-structure determination ⁵ of $[{Mn(cp)(CO)_2}_2PPh]$ $(cp = \eta - C_5 H_5)$ shows that the formally electron-deficient phosphorus atom has a trigonal planar arrangement of

* Present address: Fachbereich Chemie, The University, Universitätstraβe, 4300 Essen-1, West Germany. † Part 11, B. Stutte, V. Bätzel, R. Boese, and G. Schmid, Cham. Box. 1078, 111, 1602

Chem. Ber., 1978, 111, 1603.

¹ A. Vizi-Orosz, G. Pályi, and L. Markó, J. Organometallic Chem., 1973, **60**, C25.

² K. E. Schwarzhans and H. Steiger, Angew. Chem., 1972, 84, 587.

³ L. Markó and B. Markó, Inorg. Chim. Acta, 1975, 14, L39.

ligands, and is stabilised by $metal(d_{\pi})$ -phosphorus(p_{π}) bonding [see (A)]. A more common mode of bonding

for the PPh ligand is triply bridging metal atoms as in $[Fe_3(CO)_9(PPh)_2]^7$ Another example ³ is the series of paramagnetic complexes $[Co_3(CO)_9(PR)]$ (R = Ph, Bu^t, or NEt₂). The latter complexes are believed to contain a tetrahedral Co_3P arrangement [see (B)]. A third mode

G. Huttner, G. Mohr, and A. Frank, Angew. Chem., 1976, 88,

719. ⁷ P. M. Treichel, W. K. Dean, and W. M. Douglas, *Inorg. Chem.*, 1972, 11, 1609.

⁴ K. Moedritzer, L. Maier, and L. C. D. Groenweghe, J. Chem. and Eng. Data, 1962, 7, 307.

⁵ G. Huttner, H. D. Müller, A. Frank, and H. Lorenz, Angew. Chem., 1975, 87, 714.

of bonding was encountered ⁸ in the tetracobalt cluster complex $[Co_4(CO)_8(\mu-CO)_2(\mu-PPh)_2]$. Determination of the structure by X-ray diffraction methods shows the phosphorus atoms to be five-co-ordinate, each PPh group bridging four cobalt atoms [see (C)].

We have prepared the complex $[{Co(CO)_4}_2PPh]$ (1) which demonstrates a fourth mode of bonding of the PPh group to transition metals. The complex is formed in the reaction of PPhCl₂ with Na[Co(CO)₄] at -78 °C as a red-orange solid which is stable at room temperature and very soluble in toluene, but insoluble in hexane. The i.r. spectrum shows a simple pattern in the terminal carbonyl-stretching region, indicative of Co(CO)₄ groups, and no bridging-carbonyl bands. Further absorptions are characteristic of a phenyl group. The elemental analysis supports the formation given. A structure for (1) is proposed containing two independent Co(CO)₄ groups bridged by the PPh ligand.

The reaction of (1) with $[Fe_2(CO)_9]$ was found to give the diamagnetic mixed-metal cluster [Co₂Fe(CO)₉(PPh)] (2) as black, moderately air-stable, crystals. The i.r. spectrum of (2) in the carbonyl-stretching region shows six bands, none indicative of bridging carbonyl groups. The pattern is similar to that quoted for the analogous complex $[Co_9Fe(CO)_9S];$ ⁹ however, the frequencies are shifted towards lower values in accordance with the higher basicity of the PPh group compared to that of sulphur. This effect has been noticed ³ before in the i.r. spectra of the complexes $[Co_3(CO)_9X]$ $[X = PR,^3 com$ pared to S¹⁰ or CR' (ref. 11)]. The mass spectrum of (2) shows a parent ion at m/e 534, and peaks for successive loss of five to nine carbonyl groups. A high-resolution mass spectrum confirms that the molecule is $[Co_2Fe(CO)_9-$ (PPh)] (Found: m/e 533.767 35. ${}^{12}C_{15}H_{5}{}^{59}Co_{2}{}^{56}Fe^{16}$ -0**,31**P requires 533.769 81. Found: 534.769 81. ¹²C₁₅H₅⁵⁹Co₂⁵⁷Fe¹⁶O₉³¹P requires 534.768 89).

The structure of $[Co_2Fe(CO)_9S]$ has been determined by X-ray crystallography.¹² The complex consists of a basal $M_3(CO)_9$ fragment symmetrically linked to the apical sulphur atom. This basal fragment is composed of three $M(CO)_3$ groups identically positioned at the vertices of an equilateral triangle with the metals joined to one another by direct metal-metal interactions and by the triply bridging sulphur atom. We propose that the structure of (2) is analogous to that of $[Co_2Fe(CO)_9S]$, likewise containing an equilateral triangular arrangement of the Co_2Fe atoms bonded symmetrically to the apical PPh group. The PPh group acts formally as a four-electron donor.

The effect of an unpaired electron on the structure and stability towards air of these cluster complexes has already been discussed.^{12,13} Comparison ¹² of the structures of paramagnetic $[Co_3(CO)_9S]$ and diamagnetic $[Co_2Fe(CO)_9S]$ shows that the metal-metal bond lengths in the latter complex are on average nearly 0.1 Å shorter. This is accounted for by accommodation of the unpaired electron of $[Co_3(CO)_9S]$ in a molecular orbital which is antibonding with respect to the metal-metal bonds. The unpaired electron is also believed ⁹ to cause the observed high sensitivity to air, whereas $[Co_2Fe (CO)_9S]$ is stable to oxidation. Similarly, crystals of paramagnetic $[Co_3(CO)_9(PPh)]$ are sensitive to air, but (2) is moderately stable for short periods.

A second product was isolated during the reaction of (1) with $[Fe_2(CO)_9]$ and identified as $[Co_2(CO)_7(PPh)]$ (3). This was shown to be a thermal-decomposition product of (1) and best prepared by heating a solution of (1) at 60 °C. To optimise the yield of the cluster (2) it was therefore necessary to keep the temperature of the reaction of (1) with $[Fe_2(CO)_9]$ below 55 °C.

The i.r. spectrum of (3) shows four bands in the carbonyl-stretching region. The single band at 1 879 cm⁻¹ is indicative of a bridging carbonyl group. A structure (3a) may be suggested in which a carbonyl group and the PPh ligand bridge the two cobalt atoms. To satisfy the electronic requirements of the cobalt atoms a metalmetal bond is assumed. This structure is formally derived from $[Co_2(CO)_8]$ by replacement of one CO bridge by PPh. The carbonyl stretching frequencies are correspondingly lowered compared to $[Co_2(CO)_8]$.

EXPERIMENTAL

Microanalyses were by the A. Bernhardt Mikroanalytisches Laboratorium, Elbach. Infrared spectra were recorded on

⁸ R. C. Ryan and L. F. Dahl, J. Amer. Chem. Soc., 1975, 97, 6904.

⁹ S. A. Khattab, L. Markó, G. Bor, and B. Markó, J. Organometallic Chem., 1964, 1, 373.
¹⁰ L. Markó, G. Bor, and E. Klumpp, Chem. and Ind., 1961,

¹⁰ L. Markó, G. Bor, and E. Klumpp, *Chem. and Ind.*, 1961, 1491.

¹¹ G. Bor, L. Markó, and B. Markó, *Chem. Ber.*, 1962, **95**, 333. ¹² D. L. Stevenson, C. H. Wei, and L. F. Dahl, *J. Amer. Chem.* Soc. 1971 **98**, 6027

Soc., 1971, 93, 6027. ¹³ C. E. Strouse, and L. F. Dahl, J. Amer. Chem. Soc., 1971, 93. 6032.

a Perkin-Elmer 457 spectrometer and calibrated using polystyrene. The Fourier-transform ${}^{31}P$ n.m.r. spectrum was obtained on a Varian XL 100 spectrometer, using $H_{3}PO_{4}$ as external standard. The mass spectrum of (2) was obtained on a Varian CH7 machine.

All the operations were carried out under an atmosphere of dry nitrogen. Solvents were dried and saturated with nitrogen by distilling over potassium (toluene) or Li[AlH₄] (diethyl ether, benzene, or light petroleum). Samples of PPhCl₂, $[Co_2(CO)_8]$, and $[Fe_2(CO)_9]$ were obtained commercially. The salt Na[Co(CO)₄] was prepared according to the literature method.¹⁴

Reactions.—Na[Co(CO)₄] with PPhCl₂. A toluene solution (10 cm³) of PPhCl₂ (0.724 g, 4.04 mmol) was added dropwise to a suspension of Na[Co(CO)₄] (1.57 g, 8.09 mmol) in toluene (40 cm³) containing diethyl ether (2 cm³) at -78 °C. The mixture was stirred for 2 h at -78 °C and then allowed to warm slowly to room temperature. The red reaction mixture was filtered and the filtrate added dropwise to light petroleum (250 cm³), resulting in immediate precipitation of an orange solid. This was recrystallised from toluene–light petroleum giving μ -phenylphosphinediyl-bis(tetracarbonylcobalt) (1), 950 mg (52%), m.p. 95 °C (decomp.) (Found: C, 37.05; H, 1.35; Co, 26.2; P, 7.15. Calc. for C₁₄H₅Co₂O₈P: C, 37.35; H, 1.10; Co, 26.2; P, 6.90%); v(CO) at 2 072m, 2 020vs, and 1 995 (sh) cm⁻¹ in Nujol.

* Throughout this paper: 1 mmHg \approx 13.6 \times 9.8 Pa.

¹⁴ W. Hieber, O. Vohler, and G. Braun, Z. Naturforsch., 1958, **B13**, 192.

Complex (1) with $[Fe_2(CO)_9]$. Diethyl ether (5 cm³) and [Fe₂(CO)₉] (180 mg, 0.49 mmol) were added to a stirred toluene solution (30 cm³) of (1) (170 mg, 0.38 mmol) at room temperature. The mixture was stirred at 45 °C for 4 h and then at 50 °C for 30 min. The resulting solution was filtered and the solvent removed in vacuo. Pentacarbonyliron was removed from the residue at 0.1 mmHg * which was then extracted by stirring overnight with light petroleum (40 cm³). Solvent was removed from the extract and a black solid sublimed out of the residue at 80 °C (0.05 mmHg). Recrystallisation from light petroleum gave black needles of 1, 1, 1, 2, 2, 2, 3, 3, 3-nonacarbonyl- μ_3 -phenylphosphinediyltriangulo-dicobaltiron (2), 5 mg (2.5%) (Found: C, 33.6; H, 1.10%; M 534. Calc. for C₁₅H₅Co₂FeO₉P: C, 33.7; H, 0.95%; M 534); v(CO) at 2 101w, 2 059vs, 2 048vs, 2 039vs, 1 981w, and 1 969w cm⁻¹ in light petroleum.

Thermal Decomposition of Complex (1).—A stirred toluene solution (30 cm³) of (1) (200 mg, 0.44 mmol) was heated at 60 °C for 5 h. The resulting solution was filtered and solvent removed *in vacuo*. The light petroleum-soluble part of the residue was chromatographed on silica gel. An orange-red band was eluted with toluene–light petroleum (1:10) and solvent removed leaving a red solid. Recrystallisation from benzene gave red crystalline μ -carbonyl- μ -phenylphosphinediyl-bis(tricarbonylcobalt) (Co–Co) (3), 15 mg (8%), m.p. 256—258 °C (Found: C, 36.85; H, 1.35; Co, 27.8. Calc. for C₁₃H₅Co₂O₇P: C, 36.95; H, 1.20; Co, 27.95%); v(CO) at 2 048vs, 2 039vs, 2 023vs, and 1 879m cm⁻¹ in light petroleum.

[7/1982 Received, 10th November, 1977]